Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 165(5)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38578954

RESUMEN

In the classical insulin target tissues of liver, muscle, and adipose tissue, chronically elevated levels of free fatty acids (FFA) impair insulin signaling. Insulin signaling molecules are also present in ß-cells where they play a role in ß-cell function. Therefore, inhibition of the insulin/insulin-like growth factor 1 pathway may be involved in fat-induced ß-cell dysfunction. To address the role of ß-cell insulin resistance in FFA-induced ß-cell dysfunction we co-infused bisperoxovanadate (BPV) with oleate or olive oil for 48 hours in rats. BPV, a tyrosine phosphatase inhibitor, acts as an insulin mimetic and is devoid of any antioxidant effect that could prevent ß-cell dysfunction, unlike most insulin sensitizers. Following fat infusion, rats either underwent hyperglycemic clamps for assessment of ß-cell function in vivo or islets were isolated for ex vivo assessment of glucose-stimulated insulin secretion (GSIS). We also incubated islets with oleate or palmitate and BPV for in vitro assessment of GSIS and Akt (protein kinase B) phosphorylation. Next, mice with ß-cell specific deletion of PTEN (phosphatase and tensin homolog; negative regulator of insulin signaling) and littermate controls were infused with oleate for 48 hours, followed by hyperglycemic clamps or ex vivo evaluation of GSIS. In rat experiments, BPV protected against fat-induced impairment of ß-cell function in vivo, ex vivo, and in vitro. In mice, ß-cell specific deletion of PTEN protected against oleate-induced ß-cell dysfunction in vivo and ex vivo. These data support the hypothesis that ß-cell insulin resistance plays a causal role in FFA-induced ß-cell dysfunction.


Asunto(s)
Resistencia a la Insulina , Células Secretoras de Insulina , Fosfohidrolasa PTEN , Animales , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratas , Ratones , Masculino , Fosfohidrolasa PTEN/metabolismo , Ácido Oléico/farmacología , Insulina/metabolismo , Ratones Endogámicos C57BL , Secreción de Insulina/efectos de los fármacos , Ácidos Grasos no Esterificados/metabolismo , Ratas Sprague-Dawley
2.
Endocrinology ; 163(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919671

RESUMEN

MicroRNAs (miRNAs) expressed in the hypothalamus are capable of regulating energy balance and peripheral metabolism by inhibiting translation of target messenger RNAs (mRNAs). Hypothalamic insulin resistance is known to precede that in the periphery, thus a critical unanswered question is whether central insulin resistance creates a specific hypothalamic miRNA signature that can be identified and targeted. Here we show that miR-1983, a unique miRNA, is upregulated in vitro in 2 insulin-resistant immortalized hypothalamic neuronal neuropeptide Y-expressing models, and in vivo in hyperinsulinemic mice, with a concomitant decrease of insulin receptor ß subunit protein, a target of miR-1983. Importantly, we demonstrate that miR-1983 is detectable in human blood serum and that its levels significantly correlate with blood insulin and the homeostatic model assessment of insulin resistance. Levels of miR-1983 are normalized with metformin exposure in mouse hypothalamic neuronal cell culture. Our findings provide evidence for miR-1983 as a unique biomarker of cellular insulin resistance, and a potential therapeutic target for prevention of human metabolic disease.


Asunto(s)
Hipotálamo/metabolismo , Insulina/farmacología , Metformina/farmacología , MicroARNs/genética , Receptor de Insulina/genética , Adulto , Animales , Línea Celular , Células Cultivadas , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Hipotálamo/citología , Insulina/sangre , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , MicroARNs/sangre , Persona de Mediana Edad , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Obesidad/sangre , Obesidad/genética , Obesidad/metabolismo , Receptor de Insulina/metabolismo
3.
Diabetes ; 67(5): 885-897, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29436377

RESUMEN

Specific circulating metabolites have emerged as important risk factors for the development of diabetes. The acylcarnitines (acylCs) are a family of metabolites known to be elevated in type 2 diabetes (T2D) and linked to peripheral insulin resistance. However, the effect of acylCs on pancreatic ß-cell function is not well understood. Here, we profiled circulating acylCs in two diabetes cohorts: 1) women with gestational diabetes mellitus (GDM) and 2) women with recent GDM who later developed impaired glucose tolerance (IGT), new-onset T2D, or returned to normoglycemia within a 2-year follow-up period. We observed a specific elevation in serum medium-chain (M)-acylCs, particularly hexanoyl- and octanoylcarnitine, among women with GDM and individuals with T2D without alteration in long-chain acylCs. Mice treated with M-acylCs exhibited glucose intolerance, attributed to impaired insulin secretion. Murine and human islets exposed to elevated levels of M-acylCs developed defects in glucose-stimulated insulin secretion and this was directly linked to reduced mitochondrial respiratory capacity and subsequent ability to couple glucose metabolism to insulin secretion. In conclusion, our study reveals that an elevation in circulating M-acylCs is associated with GDM and early stages of T2D onset and that this elevation directly impairs ß-cell function.


Asunto(s)
Carnitina/análogos & derivados , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Intolerancia a la Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Adulto , Animales , Carnitina/metabolismo , Carnitina/farmacología , Estudios de Casos y Controles , Respiración de la Célula/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Ratones , Periodo Posparto , Embarazo
4.
EBioMedicine ; 27: 200-213, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29290411

RESUMEN

Prescription ω-3 fatty acid ethyl ester supplements are commonly used for the treatment of hypertriglyceridemia. However, the metabolic profile and effect of the metabolites formed by these treatments remain unknown. Here we utilized unbiased metabolomics to identify 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) as a significant metabolite of the ω-3-acid ethyl ester prescription Lovaza™ in humans. Administration of CMPF to mice before or after high-fat diet feeding at exposures equivalent to those observed in humans increased whole-body lipid metabolism, improved insulin sensitivity, increased beta-oxidation, reduced lipogenic gene expression, and ameliorated steatosis. Mechanistically, we find that CMPF acutely inhibits ACC activity, and induces long-term loss of SREBP1c and ACC1/2 expression. This corresponds to an induction of FGF21, which is required for long-term steatosis protection, as FGF21KO mice are refractory to the improved metabolic effects. Thus, CMPF treatment in mice parallels the effects of human Lovaza™ supplementation, revealing that CMPF may contribute to the improved metabolic effects observed with ω-3 fatty acid prescriptions.


Asunto(s)
Suplementos Dietéticos , Ésteres/uso terapéutico , Ácidos Grasos Omega-3/uso terapéutico , Hígado Graso/tratamiento farmacológico , Hígado Graso/prevención & control , Furanos/uso terapéutico , Metaboloma , Propionatos/uso terapéutico , Adulto , Animales , Dieta Alta en Grasa , Relación Dosis-Respuesta a Droga , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/metabolismo , Furanos/metabolismo , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Ratones Obesos , Propionatos/metabolismo
5.
Diabetologia ; 60(10): 2021-2032, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28725915

RESUMEN

AIMS/HYPOTHESIS: We have previously shown that oxidative stress plays a causal role in beta cell dysfunction induced by fat. Here, we address whether the proinflammatory kinase inhibitor of (nuclear factor) κB kinase ß (IKKß), which is activated by oxidative stress, is also implicated. METHODS: Fat (oleate or olive oil) was infused intravenously in Wistar rats for 48 h with or without the IKKß inhibitor salicylate. Thereafter, beta cell function was evaluated in vivo using hyperglycaemic clamps or ex vivo in islets isolated from fat-treated rats. We also exposed rat islets to oleate in culture, with or without salicylate and 4(2'-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline; BMS-345541 (BMS, another inhibitor of IKKß) and evaluated beta cell function in vitro. Furthermore, oleate was infused in mice treated with BMS and in beta cell-specific Ikkb-null mice. RESULTS: 48 h infusion of fat impaired beta-cell function in vivo, assessed using the disposition index (DI), in rats (saline: 1.41 ± 0.13; oleate: 0.95 ± 0.11; olive oil [OLO]: 0.87 ± 0.15; p < 0.01 for both fats vs saline) and in mice (saline: 2.51 ± 0.39; oleate: 1.20 ± 0.19; p < 0.01 vs saline) and ex vivo (i.e., insulin secretion, units are pmol insulin islet-1 h-1) in rat islets (saline: 1.51 ± 0.13; oleate: 1.03 ± 0.10; OLO: 0.91 ± 0.13; p < 0.001 for both fats vs saline) and the dysfunction was prevented by co-infusion of salicylate in rats (oleate + salicylate: 1.30 ± 0.09; OLO + salicylate: 1.33 ± 0.23) or BMS in mice (oleate + BMS: 2.25 ± 0.42) in vivo and by salicylate in rat islets ex vivo (oleate + salicylate: 1.74 ± 0.31; OLO + salicylate: 1.54 ± 0.29). In cultured islets, 48 h exposure to oleate impaired beta-cell function ([in pmol insulin islet-1 h-1] control: 0.66 ± 0.12; oleate: 0.23 ± 0.03; p < 0.01 vs saline), an effect prevented by both inhibitors (oleate + salicylate: 0.98 ± 0.08; oleate + BMS: 0.50 ± 0.02). Genetic inhibition of IKKß also prevented fat-induced beta-cell dysfunction ex vivo ([in pmol insulin islet-1 h-1] control saline: 0.16 ± 0.02; control oleate: 0.10 ± 0.02; knockout oleate: 0.17 ± 0.04; p < 0.05 control saline vs. control oleate) and in vivo (DI: control saline: 3.86 ± 0.40; control oleate: 1.95 ± 0.29; knockout oleate: 2.96 ± 0.24; p < 0.01 control saline vs control oleate). CONCLUSIONS/INTERPRETATION: Our results demonstrate a causal role for IKKß in fat-induced beta cell dysfunction in vitro, ex vivo and in vivo.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Quinasa I-kappa B/antagonistas & inhibidores , Células Secretoras de Insulina/efectos de los fármacos , Ácido Oléico/farmacología , Ácido Salicílico/farmacología , Animales , Femenino , Imidazoles/farmacología , Células Secretoras de Insulina/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Quinoxalinas/farmacología , Ratas , Ratas Wistar
6.
Cell Rep ; 14(12): 2889-900, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26997281

RESUMEN

Prediabetes, a state of mild glucose intolerance, can persist for years before a sudden decline in beta cell function and rapid deterioration to overt diabetes. The mechanism underlying this tipping point of beta cell dysfunction remains unknown. Here, the furan fatty acid metabolite CMPF was evaluated in a prospective cohort. Those who developed overt diabetes had a significant increase in CMPF over time, whereas prediabetics maintained chronically elevated levels, even up to 5 years before diagnosis. To evaluate the effect of increasing CMPF on diabetes progression, we used obese, insulin-resistant models of prediabetes. CMPF accelerated diabetes development by inducing metabolic remodeling, resulting in preferential utilization of fatty acids over glucose. This was associated with diminished glucose-stimulated insulin secretion, increased ROS formation, and accumulation of proinsulin, all characteristics of human diabetes. Thus, an increase in CMPF may represent the tipping point in diabetes development by accelerating beta cell dysfunction.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Furanos/sangre , Furanos/metabolismo , Estado Prediabético/patología , Propionatos/sangre , Propionatos/metabolismo , Adulto , Anciano , Animales , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Productos Finales de Glicación Avanzada/análisis , Glucólisis/efectos de los fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Modelos Logísticos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Persona de Mediana Edad , Obesidad/etiología , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Páncreas/metabolismo , Páncreas/patología , Estado Prediabético/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...